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 х Modeling, of a game or a random out-
come in general.

 х Estimation, of the parameters govern-
ing this game or random outcome.

 х Computation, of the fair price of the 
game or expected gain of the random 
outcome.

However, before we start working on these 
tasks we need some theory.

The origins of financial mathematics
Louis Bachelier (1870–1946) was born in 
a family of wine merchants and bankers, 
which played a particular role in his lat-
er career. Because he lost his family at a 
young age, he worked at the family busi-

However, as I am standing on the other 
side of this game, I only stand to lose by 
playing Game B. Hence, in order to start 
playing this game I will ask you for an ‘en-
trance fee’. Let us now compute the fair 
price for entering Game B, where by fair we 
mean the price at which both sides will be 
happy and will start playing the game.

The data describing the outcome of this 
game are the following:

 х Head or Tail appear with probability 2
1 , 

assuming that the coin is fair.
 х Head: you gain € 1 and I lose € 1.
 х Tail: no gain or loss for both sides.

Then, we can agree that the fair price for 
entering the game equals the expected 
gain (for you) or the expected loss (for me) 
based on the data above, which equals
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In mathematical terms, we can summarize 
this computation as follows: the fair price 
for entering the game equals the expected 
gain of the game (B) under a probability 
measure (Q ) that makes the game fair, i.e.

[ ] .BPrice EQ= (1)

This toy example already embodies the 
main tasks of a mathematician working in 
financial markets:

A motivating example: Games with coins
Assume that I have a € 1 coin in my toga 
and I am offering you the possibility of 
playing one of the following two games:

 х Game A: in case Head appears I will give 
you one Euro, while in case Tail appears 
you will give me one Euro.

 х Game B: in case Head appears I will give 
you again one Euro, but in case Tail ap-
pears nothing will happen.

A natural question to ask first, is which 
game would you prefer to play, if you were 
given the choice between Game A and 
Game B. The answer is rather obvious: 
any rational individual would prefer to 
play Game B, since she will be given the 
opportunity to gain one Euro in case Head 
appears, but she will not lose anything in 
case Tail appears.
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Figure	1	 Dutch Euro coins.
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−1, Tail
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Figure	2	 Payoffs of Game A and Game B. Figure	3	 Louis Bachelier.
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is the payoff of € 1 or € 0, depending on the 
outcome of the coin toss.

Let me now present some basic exam-
ples of financial derivatives. AFC Ajax, is a 
famous football club, but it is also a list-
ed company at the Euronext Amsterdam 
stock exchange. Therefore, there exist 
derivatives written on the AFC Ajax stock. 
The price of the Ajax stock on the day of 
this address was (approximately) equal to 
€ 10.95.

Example 1. The simplest example of a fi-
nancial derivative is a forward contract, 
which is the obligation to buy 100 shares of 
the Ajax stock for € 10,95 in three months 
from now. Assuming that in three months 
the price of the Ajax stock has dropped to 
€ 9.95, then the buyer of the forward con-
tract will make a loss of € 100 from this con-
tract. Therefore, a forward contract is anal-
ogous to Game A, since they payoff might 
be positive or negative; see Figure 4.

tion about his life and work is available 
here: https://www.bachelierfinance.org/
louis-bachelier.

The basics of financial derivatives
Let us now take a step back and discuss 
about financial markets and financial de-
rivatives. The origins of derivatives, i.e., 
contracts whose price depends on the de-
velopment of the price of another good, 
can already be traced back to the trading of 
commodities in ancient Mesopotatmia and 
medieval Europe; see, for example, the in-
famous ‘tulipmania’ in Holland during the 
1600s.

Modern financial derivatives are legal 
contracts between counter-parties, that 
specify certain cash-flows based on the 
evolution of the prices of some underlying 
financial assets. Revisiting the games dis-
cussed in the beginning, Game A or B is the 
‘derivative’, the ‘underlying asset’ is the 
coin, and the ‘cash-flow’ in, e.g., Game B 

ness, and learned about the workings of 
financial markets from a young age. He 
worked for his PhD in mathematics under 
the supervision of Henri Poincaré and, due 
to his background, he decided to work in 
the mathematics of financial markets. His 
PhD thesis was defended in 1900 and was 
titled Théorie de la spéculation (i.e., ‘Theo-
ry of Speculation’) [1].

A key idea from Louis Bachelier’s thesis, 
which summarizes his theory for the valua-
tion of financial contracts, is the following:

“L’espérance mathématique du spécu-
lateur est nulle”

i.e., the mathematical expectation of a 
speculator is zero. This statement is im-
pressive in itself, because Bachelier is 
thinking about the ‘mathematical expecta-
tion’ of a random quantity in 1900, while 
the mathematical foundations of probabil-
ity theory were laid out by Andrei Kolmog-
orov thirty years later!

Moreover, if we translate this statement 
in the setting of the games presented be-
fore, then what Bachelier means is that 
the difference between the expected gain 
and the price for entering the game should 
equal zero, which brings us back to equa-
tion (1). In other words, Louis Bachelier 
developed the first version of no-arbitrage 
pricing, already in 1900!

In order to honor his contributions to 
the field, the society founded in 1996 by 
researchers in the newly emerging field 
of mathematical finance was named the 
Bachelier Finance Society. More informa- Figure	4	 Payoff of a forward contract (left) and an option (right).
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of stochastic processes, this is called path 
of a random walk.

Now, mathematicians like to think 
about limits, so we would also like to know 
what happens in the limit, when we make 
infinitely many coin tosses and scale the 
size of up and down movements accord-
ingly. One can prove that, in the limit, the 
outcome is a stochastic process called 
Brownian motion, and a path of Brownian 
motion appears in Figure 7. Visually, this 
path is very similar to the evolution of as-
set prices; see Figure 5 again.

Pricing financial derivatives
Let ( )W Wt t 0= $  denote a Brownian mo-
tion, where Wt  denotes the value of this 
process at time point t. The second key 
idea in Bachelier’s thesis was to use 
Brownian motion in order to model asset 
prices. In particular, he proposed the fol-
lowing model for the evolution of an asset 
price denoted by ( )S St t 0= $

, ,S S t W t 0t t0 $n v= + + (3) 

cy, and the price of the EUR / USD exchange 
rate from 2018 until 2023.

Although these plots correspond to the 
prices of financial assets with different 
characteristics, for example, Amazon is a 
global company and the bitcoin is a cryp-
tocurrency, the evolution of their prices 
presents (visually) some common charac-
teristics; namely it is random and rough.

Let us now try to built a model for the 
evolution of asset prices that has similar 
characteristics. We can start by tossing a 
coin, and assigning a higher value in case 
Head appears and a lower value in case 
Tail appears. Obviously doing this once 
does not produce a satisfactory model, but 
if we toss the coin several times and follow 
the rule of assigning higher values in case 
Head appears and lower values in case 
Tail appears, then the space of possible 
outcomes of this experiment is depicted 
on the left part of Figure 6. The right part 
of Figure 6 presents a realization of this 
experiment, i.e., the outcome of a specific 
sequence of coin tosses. In the language 

Example 2. The second simplest example 
of a financial derivative is an option, which 
is the right, but not the obligation, to buy 
100 shares of the Ajax stock for € 10,95 in 
three months from now. Assuming again 
that in three months the price of the Ajax 
stock has dropped to € 9.95, then the buyer 
of the option contract will simply not exer-
cise her right, she will buy the stock from 
the exchange for the market price and will 
not make a loss from this contract. There-
fore, an option is analogous to Game B, 
since the payoff is always non-negative; 
see Figure 4.

In mathematical terms, the payoff of an 
option written on an underlying asset S 
(e.g., the Ajax stock), with maturity T (e.g., 
three months from now) and strike price K 
(e.g., € 9.95) equals

.S KT - +_ i
An option is guaranteeing its buyer that 
she will not make a loss, hence the seller of 
the option will require an ‘entrance fee’ in 
order to sell the option, similar to Game B. 
According to Bachelier’s theory, the price 
of the option should equal

[( ) ] .S KPrice E TQ= - + (2)

We need thus to model the evolution of 
the Ajax stock price, before computing this 
price.

Modeling asset prices
We are interested now in modeling the evo-
lution of the prices of financial assets us-
ing some mathematical objects known as 
stochastic processes. Figure 5 presents the 
evolution of the Ajax stock, the Amazon 
stock, the price of the Bitcoin cryptocurren-

S0 S0

Figure	6	 Space of possible outcomes (left) and path of a random walk (right). S0  denotes the observed price of the 

financial asset today.

Figure	5	 Evolution of the Ajax stock (left), and the Amazon stock, bitcoin and EUR/USD exchange rate from 2018 until 2023 (right).
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Figure	7	 Path of a Brownian motion.

as local and stochastic volatility models 
(e.g., [5, 11]), Lévy processes (e.g., [3, 4, 6, 
15]) or rough volatility models (e.g., [7]), 
that provide a realistic description of asset 
prices, have attracted the interest of many 
mathematicians and have led to import-
ant advances in the theory of stochastic 
analysis. Simultaneously, they have been 
in heavy demand by the financial industry. 

Final remarks
The reformulation of the theory of option 
pricing developed by Black, Scholes and 
Merton using stochastic integration and 
martingale theory by Michael Harrison, 
David Kreps and Stanley Pliska in [8, 9] 
have turned mathematical finance into an 
independent scientific field within applied 
mathematics, with strong interactions with 
stochastic analysis, statistics, optimiza-
tion and numerical analysis. Methods de-
veloped in all of these fields were utilized to 
solve problems arising in mathematical fi-
nance, while mathematical finance has fed 
them in return with original, interesting and 
challenging questions that have led to new 
research directions. Primary examples of 
advances motivated by questions in math-
ematical finance, that showcase its inter- 
and intra-disciplinary nature, are backward 
stochastic differential equations (BSDEs) 
in stochastic analysis (see, e.g., [12]), path- 
dependent partial differential equations 
(PDEs) in PDE theory (see, e.g., [16]), and 
the development of a martingale version 
of the classical optimal transport problem 
(see, e.g., [10]). ←
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bution. This formula relates in an explicit 
manner on the one hand the variables of 
the option contract, i.e. the strike price 
K and the time of maturity T, and on the 
other hand the variables of the model for 
the evolution of asset prices, i.e. the initial 
stock price S0  and the volatility v. More-
over, the appearance of the cdf U  of the 
standard normal distribution is related to 
the properties of Brownian motion, that 
has normally distributed increments.

This formula has become the market 
standard for the valuation of financial 
derivatives, and actually the model in (4) 
is erroneously referred to as the ‘Black–
Scholes model’, due to the popularity it re-
ceived following the publication of the for-
mula (5). Myron Scholes and Robert Merton 
where honored with The Sveriges Riksbank 
Prize in Economic Sciences in Memory of 
Alfred Nobel 1997 for their “new method to 
determine the value of derivatives”. Fisher 
Black had, unfortunately, passed away the 
year before, and the prize is not awarded 
posthumously.

Let us finally mention that, in spite of 
the popularity of this model, the inability 
of the normal distribution to describe the 
empirical behavior of asset prices has been 
the driving force for intensive academic re-
search. Advanced stochastic models, such 

where n  represents some constant trend, 
v  a positive constant that amplifies the 
effects of the Brownian motion, while the 
Brownian motion makes the motion ran-
dom and rough.

This model was later revisited by the 
American economist Paul Samuelson in 
[14], who used the exponential function in 
order to make sure that asset prices remain 
positive at all times. The Samuelson model 
for the evolution of asset prices reads then 
as follows:

( ), .expS S t W t 0t t0 $ $n v= + (4)

The defining moment that led to the wide-
spread use of derivatives in the financial 
industry came in 1973, when Fischer Black 
and Myron Scholes in [2] and Robert Mer-
ton in [13], published their papers that 
contained an explicit formula for the price 
of an option (2) in the Samuelson model 
(4). More specifically, they showed that the 
price of an option takes the following form:

:

( ) ( ) ( ),
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where U  denotes the cumulative distribu-
tion function of the standard normal distri-
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