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these are not our focus, they are very inter-
esting both historically and from the stand-
point of aperiodic order. The first of these 
was Gummelt’s covering of the Penrose 
tiling by a single decorated decagon [10]. 
Gummelt’s overlapping tile was really the 
first mono-cluster, and provided the first 
evidence that a monotile could be possi-
ble. The second was Penrose’s ( )1 2f f+ + - 
tiling [2, 14]. This was originally described 
as a single hexagon with a smaller hexa-
gon and half-hexagons inscribed in its 
interior. The matching rules required over-
lapping hexagons to form the same type of 
hexagons as at the larger scale. An excel-
lent discussion of both of these tilings can 
be found in [5].

In a breakthrough result of Joan Taylor 
in 2010 [20], the first connected and com-
pletely geometrically defined monotile 
was discovered, but the tile is not simply 
connected. That is, the tile is not a to-
pological disc. Taylor joined forces with 
Joshua Socolar to introduce their tile to 
the mathematical community [18, 19]. The 
original formulation of the Taylor–Socolar 
tile was described as a decorated hexagon 
with certain matching rules between both 

cently proved that an aperiodic set of Wang 
tiles must have at least eleven tiles and gave 
an example of such a tile set. Note that we 
provide pictures of all tilings mentioned in 
the introduction throughout the article and 
the reader is invited to look ahead to get a 
feeling for these tile sets and their tilings.

Wang tiles are always squares, but what 
if we allow tiles to come in arbitrary shapes 
and allow tiles to be rotated and reflected? 
In the 1970s, both Sir Roger Penrose and 
Robert Ammann found aperiodic tile sets 
with just two tiles, now commonly referred 
to as the Penrose and Ammann–Beenker 
tiles, respectively. This left open the ape-
riodic monotile problem: Is there a single 
tile that can tile the plane but only in a way 
that forbids translational periodicity?

Two early attempts found monotiles that 
use overlaps to force aperiodicity. While 

In 1961, Hao Wang asked if it is possible 
to algorithmically determine whether 
translated copies of a finite set of marked 
square tiles can tile the plane. This be-
came known as the Domino Problem. As a 
first attack on the Domino Problem, Wang 
posed his Fundamental Conjecture: a set 
of Wang tiles either tiles the plane with 
translational periodicity or does not tile. 
The other possibility is a set of tiles that 
can form a tiling of the plane but always 
without any translational periodicity, such 
a tile set is called aperiodic.

Robert Berger found a counterexample 
to Wang’s Fundamental Conjecture by find-
ing an aperiodic tile set with 20 426 tiles. 
This proved undecidability of the Domino 
Problem. After finding such a set of tiles, the 
search was on for the minimal size of such a 
set. Emmanuel Jeandel and Michaël Rao re-
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square tilings, even taken up to transla-
tion, by choosing different relative shifts 
for rows of square tiles. In this case, the 
second row is shifted by 2

1  with respect to 
the bottom row that’s sitting on the x-axis, 
and the third is shifted by 3

1  with respect 
to the bottom, and so on. We could use the 
same procedure to form rows below the 
bottom row to make a complete tiling of 
the plane.

We can translate a tiling T by a vector 
x in R2  via { }T x t x t T| ; !+ = + . Notice 
that the tiling in the middle of Figure 1 has 
the property that ( , )T T1 0+ = . Indeed, if 
we translate all tiles in the tiling over by 
one unit to the left the sets ( , )T 1 0+  and 
T are exactly the same! We say that a tiling 
T is periodic if there exists a nonzero trans-
lation x in R2  such that T x T+ = , and we 
say that T is nonperiodic if T x T+ =  im-
plies x 0= . That is, if we took an infinite 
transparent photocopy of the tiling T, then 
the tiling is periodic if we can shift this 
photocopy by some non-trivial translation 
so that it perfectly matches T and nonperi-
odic if it only matches in exactly one place. 
The tiling on the right of Figure 1 is also pe-
riodic with ( , )x 1 0= . We’ll see examples of 
nonperiodic tilings in the next section.

There are many more concepts that are 
important in tiling theory. Again, the book 
of Baake and Grimm [5] contains a modern 
treatment and an exceptional foreword 
written by Roger Penrose. For example, 
there has been discussion on the local 
indistinguishability classes (LI-classes) 
for the Hat and Spectre monotiles, see [3, 
p. 2], where the notion of LI-classes can be 
found in [5, Section 5.1.1].

Wang tiles
A founder of modern tiling theory was the 
philosopher Hao Wang (1921–1995). A set 
of square prototiles with marked edges are 
called Wang tiles. Here we label the edg-
es with a colour and also a number, but 
merely to aid legibility. Tiles must meet 

like bumps and dents in the tile edges. 
We’ll see examples of this soon.

Let P  be a finite set of prototiles and G 
a subgroup of the isometry group of R2 . A 
tiling of R2  (the plane) is a countable col-
lection of tiles { }T t i Ni ; !=  such that:

––  t pi $c=  for some p P!  and c in G;

–– t R
i

i
2

N
=

d

' ;

––  ( ) ( )interior interiort ti j+ 4=  if i j! .

Let’s take a minute to understand the defi-
nition. The first bullet point specifies that 
all tiles in the tiling must be isometric cop-
ies of prototiles (i.e., some composition of 
a translation, rotation and/or reflection of 
a prototile), where the group G specifies 
the exact subset of isometries we allow for 
a given prototile set. Here we are thinking 
of the prototiles as actually sitting in the 
plane, so that we can move them about to 
form a tiling. In this article, G will always be 
the translation group, the direct isometry 
group (translations and rotations), or the 
full isometry group. Note that when we use 
the full isometry group G, we will include 
the reflected tile(s) in the prototile set for 
clarity. The second bullet point implies 
that the tiling covers the entire Euclidean 
plane and the third specifies that tiles nev-
er overlap except at their edges. Moreover, 
in the case that we have extra decorations, 
the tiling must also satisfy any extra rules 
specified by the decorations.

As Figure 1 depicts, it is easy to find til-
ings of the plane by a single square pro-
totile of side length one. In fact, there are 
infinitely many possible tilings that arise 
from an unmarked square prototile. We 
note that it’s impossible to pictorially rep-
resent a complete tiling of the plane, and 
the reader is meant to extrapolate how a 
complete tiling is produced from the small 
patch provided. For both examples in 
Figure 1, we can let G be the subgroup of 
translations. The tiling on the right reveals 
why there are infinitely many possible 

neighbouring and next to neighbouring 
tiles, and the tiling requires a reflected tile.

In March 2023, Dave Smith, Craig Ka-
plan, Joseph Myers and Chaim Goodman- 
Strauss found a simply connected mono-
tile that they called the Hat [16]. Amazing-
ly, the Hat is a simple polygonal shape and 
is entirely geometric, in the sense that no 
additional matching rules on how tiles are 
allowed to meet are required to enforce 
aperiodicity. What’s more, in the article, 
a beautiful proof of aperiodicity was used 
to show that there are, in fact, an un-
countable number of tiles in the Hat family 
that are also simply connected monotiles. 
The tiling requires a reflected version of 
the Hat. This left open the question of 
whether a simply connected and geometric 
solution to the monotile problem without 
reflections is possible.

In a marvellous stroke of insight, Smith, 
Kaplan, Myers and Goodman-Strauss real-
ised that a member of the Hat family could 
also be used to tile the plane without using 
a reflected copy of the tile [17]. The Spec-
tre aperiodic monotile was discovered. 
The Spectre is in the family of Hat tilings, 
but was one of the singular members that 
allowed periodic tilings. The authors real-
ised that forbidding the reflected tile still 
allowed tilings of the plane, but all such 
tilings lack translational periodicity. Thus, 
the Spectre provides a remarkable solu-
tion to the aperiodic monotile problem!

Tiles, tilings, and their properties
In this article, we restrict ourselves to 
two-dimensional tilings. We mostly follow 
the language and terminology defined in 
Baake and Grimm’s Aperiodic Order [5], 
which is highly recommended to the inter-
ested reader. The second main reference 
on general tiling theory is the book of Grün-
baum and Shephard [9], which contains an 
excellent introduction to Wang tiles and 
aperiodic tile sets.

We begin with the building blocks of a 
tiling. A prototile is a labelled subset of R2

that is equal to the closure of its interior. 
This just means that there are no dangling 
bits hanging from the tiles; in fact, one 
should probably just think of labelled poly-
gons. In addition, we often allow decora-
tions of the prototiles, like edge markings 
that must match, arrows to determine tile 
orientation, or lines that must continue 
across tile edges. Often, but not always, 
these decorations can be realised by puzzle 

Figure 1  Tilings of the plane by a single square prototile. The prototile is on the left along with two possible tilings.
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ods, see [5, Section 5.7.4]. The Jeandel–
Rao Wang tile set in Figure 3 reduced this 
number to just eleven Wang tiles [11]! The 
new method in this case was an exhaus-
tive computer search, so we now know that 
this is the minimal number, although we 
don’t know that the depicted Wang tile set 
is essentially unique as an aperiodic set of 
eleven Wang tiles. A patch of Jeandel–Rao 
tiles is in Figure 4.

Relaxing the rules and the Penrose tiles
A set of prototiles, of any shape, that ad-
mits tilings of the plane but only nonpe-
riodically is called an aperiodic tile set. 
During the flurry of activity to reduce the 
number of Wang tiles in the 1970s, Roger 
Penrose and Robert Ammann began 
considering aperiodic tile sets of poly-
gons with specified markings. Both inde-
pendently found an aperiodic tile set with 
just two tiles! However, we focus only on 
the Penrose tiles here. An excellent intro-
duction to aperiodic tiles sets, with proofs 
that had not appeared previously in the lit-
erature, is [9, Chapter 10].

, , , , , , ,n 56 52 40 35 34 32 24=  and 16, see [9, 
Section 1.11]. The following quote appears 
in [9, p.596]:

“The reduction in the number of Wang 
tiles in an aperiodic set from over 20 000 
to 16 has been a notable achievement. 
Perhaps the minimum possible num-
ber has now been reached. If, however, 
further reductions are possible then it 
seems certain that new ideas and meth-
ods will be required.”

Two further reductions were found, the 
Kari–Culik Wang tile set with only 13 tiles 
was found using number theoretic meth-

along complete edges only when the sym-
bol matches and we only allow G to be the 
group of translations; no rotations or re-
flections of prototiles allowed.

In 1961 Wang [22] proposed the Dom-
ino Problem: given a set of Wang tiles, is 
it possible to algorithmically determine 
whether the set tiles the plane? Wang tiles 
are theoretically important in logic, since 
the behaviour of any Turing machine can 
be mimicked using some particular set of 
Wang tiles, see [9, Section 11.4]. Wang re-
alised that a set P  of Wang tiles has four 
possibilities:

1.	 The set P  does not tile the plane, such 
as a single tile with four distinct sym-
bols on its edges.

2.	 The set P  can only tile the plane period-
ically, such as the Wang tile on the left 
of Figure 2.

3.	 The set P  can tile both periodically and 
nonperiodically, such as the Wang tile 
set on the right of Figure 2 (points for 
finding a method to fill the tiling out to 
the plane in a non-periodic way).

4.	 The set P  tiles the plane but only non-
periodically.

Wang realised that the existence of a Wang 
tile set satisfying possibility 4 implies that 
the Domino Problem is undecidable [22]. 
This led to his Fundamental Conjecture 
that there are no Wang tile sets satisfying 
possibility 4. However, Wang’s student, 
Robert Berger, found the first such Wang 
tile set with 20 426 tiles [7]! According to 
Grünbaum and Shephard [9, Chapter 11], 
Berger subsequently got the set down 
to only 104 tiles (actually 103 tiles, see 
[11, Section 1.2]). Shortly after, Donald 
Knuth (the inventor of TeX amongst other 
things) modified Berger’s set to only re-
quire 92 tiles. The hunt was on to find the 
smallest set of Wang tiles, with contribu-
tions from Hans Läuchli, Raphael Robin-
son, Roger Penrose, Robert Ammann and 
John Conway finding Wang tiles sets for 

0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0

0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0

0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0

0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0
0 0
0

0

0 0
0

0

0 1
2

2
1 0
2

2
0 0
2

2
0 1
2

2
1 0
2

2

0 1
2

2
1 0
2

2
0 0
2

2
0 1
2

2
1 0
2

2

0 1
2

2
1 0
2

2
0 0
2

2
0 1
2

2
1 0
2

2

0 1
2

2
1 0
2

2
0 0
2

2
0 1
2

2
1 0
2

2
1 0
2

2

0 0
2

2

0 0
2

2

0 0
2

2

0 0
2

2
0 1
2

2

0 0
2

2
0 0
2

2

0 0
2

2

0 1
2

2

1 0
2

2

Figure 2  Two sets of Wang tiles, the left can only tile periodically, the right can tile both periodically and nonperiodically.
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Figure 3  The smallest possible set of Wang tiles was found by Jeandel and Rao [11] consisting of just eleven tiles.
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Figure 4  A patch of Jeandel–Rao Wang tiles shows the type of complexity required to reduce the number of tiles to eleven.
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The Penrose two tile aperiodic set is 
depicted in Figure 5 and a patch of tiles 
in Figure 7. The tiles are simple polygonal 
shapes that must match full-edge to full-
edge with the blue and red lines continu-
ing from one tile to the next. We note that 
the line matching rules can be encoded 
purely geometrically by puzzle like bumps 
and dents, see [5, p. 154]. These tiles were 
reduced from other versions of Penrose 
tile sets, with more prototiles, and have 
a ten-fold symmetry group. Roger Penrose 
gave a lecture at ‘Hatfest: Celebrating the 
Discovery of an Aperiodic Monotile’ at the 
University of Oxford in July 2023, where he 
showed how he constructed his two tile 
set in Figure 5. He suggested that he may 
have been indirectly inspired by a book of 
Kepler that was on his parents’ bookshelf. 
In fact, during his lecture he overlayed his 
tiles with an image produced by Kepler 
to an almost perfect match, see Figure 6. 
More information on this link can be found 
in Rodrigo Treviño’s Notices of the Ameri-
can Mathematical Society article [21]. Figure 6  Roger Penrose overlaying a patch of the Penrose tiling over Kepler’s pentagon pattern.

Figure 7  A patch of a Penrose tiling.

Figure 5  The two tile Penrose aperiodic tile set. The tiles 

must meet full-edge to full-edge and the red and blue lines 

must continue from one tile to the next.
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logical disc. See Figure 11, where distinct 
tiles are coloured differently so that one 
can see how tiles interconnect. Focussing 
on the single black tile in the centre of the 
image shows the interesting geometry of 
the tile.

For the experts, adding an extra vertex 
consistency rule, (R3), to the Taylor–So-
colar tile forces a single LI-class, see [18, 
p. 2215]. This additional rule was included 
in the original discovery by Taylor [20]. In 
practice, this means that the tiling space 
of the Taylor–Socolar tiling satisfying 
(R1)–(R3) is minimal in the sense of dy-
namical systems. Moreover, the Taylor–
Socolar tilings are model sets [2, 12], and 
thus are strongly related to mathematical 

Joshua Socolar in order to verify the dis-
covery and fully work out the details. In a 
crowning achievement, they introduced 
the first true aperiodic monotile with local 
rules that are defined only between neigh-
bours and next nearest neighbours [18, 19]. 
The Taylor–Socolar tile consists of a hexag-
onal tile and its mirror image such that:

(R1)	The black lines must continue across 
tile edges.

(R2)	The purple flags at vertices of tiles that 
meet across a single hexagonal edge 
must point in the same direction.

The tiles are depicted in Figure 9 and the 
arrows on the right point to the flag rule 
(R2). Figure 10 shows a patch and the read-
er should verify that (R1) and (R2) hold in 
any local patch in order to properly under-
stand the local rules.

Theorem 1 [18, Theorem 1]. The Taylor–So-
colar monotile is aperiodic; that is, there are 
tilings formed by isometries of the Taylor– 
Socolar tile satisfying (R1) and (R2) in every 
local patch, and every such tiling is nonpe-
riodic.

The proof of Theorem 1 is very elegant 
and is recommended to the interested 
reader. Interestingly, the Taylor–Socolar 
tile can be realised by shape alone. How-
ever, the tile is not simply connected; that 
is, the tile is connected but is not a topo-

The success of the Penrose tiles in 
popular culture has been immense, to the 
point that his tiles were seemingly imprint-
ed on Kleenex toilet paper, see Figure 8. 
Luckily, the tiles had been patented, and 
the following was issued by David Bradley, 
the Director of Pentaplex:

“So often we read of very large com-
panies riding rough-shod over small 
businesses or individuals, but when it 
comes to the population of Great Britain 
being invited by a multi-national to wipe 
their bottoms on what appears to be the 
work of a Knight of the Realm without 
his permission, then a last stand must 
be made.”

The case was settled out of court and 
Kleenex stopped making the toilet paper. 
Squares are highly coveted by scientists 
studying aperiodic order, the second au-
thor has one framed on his office wall.

The Taylor–Socolar monotile
Given that two-tile aperiodic tile sets were 
found in the 1970s, it naturally begs the 
question of whether an aperiodic monotile 
is possible. That is, can one find a single 
tile and a set of local rules (decorations) 
that tile the plane but only nonperiodical-
ly. Here we have to be careful about what 
we mean by local rules. This is made very 
precise by Baake and Grimm in [5, Section 
5.7]. For us, suffice it to say that a local rule 
is a decoration that can only ‘see’ a finite 
and predefined radius in R2 .

The Taylor–Socolar tile is an excellent 
example of a decoration that defines a lo-
cal rule that is not edge-to-edge. The rules 
were discovered in 2010 by Joan Taylor, 
an amateur mathematician from Australia 
[20]. She made contact with tiling expert 

Figure 8  Toilet paper embossed with Penrose tiles.

Figure 9  The Taylor–Socolar monotile. On the left is the tile and its reflection. The image on the right demonstrates the 

(R2)-rule, flags that meet across a single hexagonal edge must point in the same direction.

Figure 10  A patch of a Taylor–Socolar tiling.

b)b)

Figure 11  A geometric version of the Taylor–Socolar tile. 

Distinct tiles have different colours so that we can see 

where the connected tiles interpenetrate.
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Interestingly, the Hat was discovered 
by Smith when tinkering with polyforms 
to see what sorts of visually interesting 
tilings he could create. He got stuck build-
ing large patches of Hat tiles and sought 
help from Kaplan’s Heesch Number soft-
ware. The Heesch Number of a tile is the 
largest number of concentric rings that 
form a patch around a single tile by iso-
metric copies, where a ring consists of all 
tiles that touch the previous ring. The cur-
rent record holder for a tile that does not 
tile the plane was found by Bašić [6] and 
has Heesch Number 6. Kaplan was able 
to show that the Hat has at least Heesch 
number 10 and then improved that to 16. 
So, it seemed pretty likely that the Hat 
would tile the plane, and in a way that 
didn’t seem to have any translational pe-
riodicity. This type of attack on the mono-
tile problem was completely different from 
previous attempts, where authors typical-
ly start with a tiling of the plane and then 
add rules to try and enforce nonperiodici-
ty. In some ways this approach goes back 
to a prototile set decidability problem, in 
the original sense of Wang. A patch of an 
infinite tiling formed from Hats is depict-
ed in Figure 15. Notice that reflected Hats 
appear with a low frequency compared to 
Hat tiles.

Theorem 3 [16, Theorem 1.1]. The Hat mono- 
tile is aperiodic; that is, there are tilings 
formed by isometries of the Hat tile, and 
every such tiling is nonperiodic.

There are two proofs that the Hat tiles 
the plane and two proofs of aperiodicity. 
The authors show that Hat tilings arise 
from a (nonstone) substitution rule that 
is recognisable, in the sense that the hier-
archy can be deduced in an infinite tiling. 
On one hand, this allows one to construct 
patches of arbitrarily large size that nest 
into each other in order to construct a til-
ing of the plane. One the other hand, rec-
ognisability implies that one can identify 
structure in the tiling of arbitrarily large 
size, and hence the tiling cannot be peri-
odic. The second proof of existence uses a 
rather simple fusion system (see [8] for the 
definition of fusion) to define arbitrarily 
large patches of tiles that expand out from 
a fixed tile, see [16, Figure 2.11]. The sec-
ond proof of aperiodicity is more involved 
but has already led to the discovery of the 
Spectre tile.

In this case the proof of aperiodicity is 
surprisingly simple and does not require a 
lot of case-checking. Indeed, we show that 
(R1)-lines always lead to longer (R1)-lines. 
Thus, there are arbitrarily long (R1)-lines in 
any tiling. This precludes translational pe-
riodicity. For if there was a non-trivial trans-
lation x R2!  such that T x T+ = , then 
there must be an (R1)-line that is longer 
than x  and the structure of the (R1)-trian-
gles forbids this translation.

The Hat and Spectre tiles
The Hat monotile [16] was discovered by 
David Smith, Craig S. Kaplan, Joseph Sam-
uel Myers and Chaim Goodman-Strauss 
with the article appearing on the Math-
ematics arXiv in March 2023. The paper 
generated an immediate buzz, resulting in 
newspaper articles in both The New York 
Times and The Guardian. The Hat was orig-
inally discovered by David Smith in Novem-
ber 2022 and the authors worked furiously 
to understand whether the Hat is an aperi-
odic monotile.

The Hat tile is unbelievably simple and 
elegant. It can be found by forming a hex-
agonal grid, dividing each hexagon into 
kites and then combining kites from three 
neighbouring hexagons into a tile. The 
kites are formed by cutting the hexagons 
with straight lines through the midpoints 
of opposite edges. For this reason the au-
thors often refer to it as a polykite. See Fig-
ure 14 for the Hat tile, its mirror image, and 
a rendering into kites that combine to form 
regular hexagons.

quasicrystals. These properties imply that 
the Taylor–Socolar tile is immensely im-
portant from the perspective of aperiodic 
order. 

Jamie Walton and the second author 
found a modification of the Taylor–Socolar 
tile that has edge-to-edge matching rules 
[23]. However, the (R2) rule below is some-
what unusual, it depends on orientation in 
the following way. Two tiles t1  and t2  are 
permitted to meet along a shared edge e 
only if:

(R1)	 The black lines continue across e,
(R2)	Whenever the two charges at e in t1  

and t2  both have a clockwise orien-
tation then they must be opposite in 
charge.

Theorem 2 [23, Theorem 1.1]. The tile in Fig-
ure 13 is aperiodic; that is, there are tilings 
formed by isometries of the tile satisfying 
(R1) and (R2) in every local patch, and ev-
ery such tiling is nonperiodic.

Figure 12  An orientational monotile, where the local rule 

depends on the orientation of the arrow in the plusses 

and minuses. The top edges are labelled with positive 

R2-charges, which are oriented in each tile from left to 

right: anticlockwise, both clockwise and anticlockwise, 

and clockwise, respectively. The bottom edges are labelled 

with negative R2-charges, from left to right: clockwise, 

both clockwise and anticlockwise, and anticlockwise

Figure 13  A patch of the orientational monotile. Two neighbouring charges with clockwise orientation must be opposite.
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The idea behind the second proof of ape-
riodicity is to contract the edges of the hat 
tile to find other combinatorially equivalent 
tilings in the sense that the patterns formed 
by tiles are the same. Indeed, the two edge 
lengths in a Hat tile are at a ratio of 3  to 
one another and come in complementary 
(opposite) pairs. Thus, we can label the Hat 
tile as ( , )Tile 3 1 . The idea is now to consid-
er ( , )Tile a b  for a0 3# #  and b0 1# # . 
There is an excellent animation of this on 
YouTube titled ‘Aperiodic monotile anima-
tion’. At the two extremes are ( , )Tile 0 1 , 
called the Comet and ( , )Tile 3 0  called the 
Chevron, see [16, Figure 3.1]. Since these 
two tiles are combinatorially equivalent to 
the Hat tiling, the authors are free to use 
them to deduce properties of the Hat tiling. 
Thus, the authors suppose that the Comet 
tiling is periodic and aim to derive a contra-
diction, meaning that this hypothesis could 
not be correct and the tiling is nonperiodic. 
Since the Comet is assumed to be periodic 

and forms the same combinatorial tiling as 
the Chevron, we can deduce that the Chev-
ron is also periodic. Moreover, since the 
tilings are combinatorially equivalent there 
must be an affine map between the period-
ic lattice of the Comet and that of the Chev-
ron. Using an argument, somewhat similar 
to an argument that 2  is irrational, they 
prove that such an affine map cannot exist. 
This implies that the Hat tiling must also be 
nonperiodic. See [16, Section 3] for further 
details.

One of the most interesting develop-
ments was again discovered by Smith and 
his coauthors, the Spectre tile [17]. Amaz-
ingly, this is ( , )Tile 1 1  from the previous 
paragraph, which can be used to tile the 
plane periodically if one allows reflection 
of the tile. However, the authors realised 
that it is still possible to tile the plane if 
reflections of the tile are not allowed to ap-
pear in a tiling, and more amazingly that all 
such tilings are nonperiodic!

( , )Tile 1 1  appears on the left hand side 
of Figure 16 and a version of the Spectre 
tile appears in the centre. The Spectre is 
merely an edge modification of ( , )Tile 1 1
to curves, which eliminate the possibility 
of using both the tile and its reflection to 
tile the plane. We understand that Dave 
Smith proposed to call the tile the Spectre 
due to the image in the centre of Figure 16. 
The image on the right was constructed 
through a fusion system to build arbitrarily 
large patches [17], and we think that also 
looks spectre like.

Theorem 4 [17, Theorem 2.2]. ( , )Tile 1 1  and 
the Spectre monotile are aperiodic; that is, 
there are tilings formed by direct (orien-
tation-preserving) isometries of each tile, 
and every such tiling is nonperiodic.

Let us make a couple of remarks about 
Theorem 4. First, this is an absolutely in-
credible result that was completely un-
expected, even given the recent Hat tile 
result. We note that ( , )Tile 1 1  is referred 
to by the authors of [17] as a weakly chiral 
monotile since it satisfies Theorem 4, but 
allowing a reflection results in a tile that 
can be used to construct a periodic tiling. 
A Spectre tile, see the centre of Figure 16, 
is referred to as a strictly chiral aperiod-
ic monotile since it satisfies Theorem 4, 
but any prototile set containing both the 

Figure 14  The Hat tile and its mirror image are an aperiodic tile set without any need for further decorations. On the right 

we see how the Hat is formed from kites that combine to form regular hexagons.

Figure 15  A patch of Hat tiles.
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point dynamical spectrum. In current work, 
the same authors have also shown that the 
Spectre tile has similar properties [4].

Since the original Hat preprint appeared 
[16], Akiyama and Araki have provided yet 
another proof of existence and aperiodicty 
of a member of the Hat family [1]. They use 
the Golden Hex substitution to prove exis-
tence and Golden Ammann bars to prove 
aperiodicty.

Mathematicians are now discovering 
that the unique structure of the Spectre 
tiling lends it many other fascinating prop-
erties [15]. For example, the dimer model 
asks how many ways there are to colour 
the edges of the tiles so that each vertex 
meets exactly one coloured edge (dimer). 
Remarkably, this model can be exactly 
solved on the Spectre tiling. The number 
of dimer arrangements is2N 1Mystic + , where 
NMystic  is the number of Mystic tiles, see 
[17, p. 6] or [15, p. 2] for the definition of a 
Mystic. More remarkable still, the dimer 
model can also be exactly solved when 
quantum superpositions of dimer place-
ments are allowed! Thus, Singh and Flick-
er have exactly solved the quantum dimer 
model for the first time in any setting.	 ←

Acknowlegements
We’d like to thank Michael Baake, Kevin Brix, 
Felix Flicker, Robbert Fokkink, Franz Gähler, 
Craig Kaplan, Jan Mazáč and Jamie Walton for 
excellent comments and suggestions on early 
drafts. This paper was written while the second 
author was a guest at the Fields Institute, and he 
thanks them for their hospitality and exception-
al research environment.

Spectre and its mirror image nonredun-
dantly does not tile the plane.

Theorem 4 was proved by showing that 
( , )Tile 1 1  and the Spectre arise from a 

(nonstone) inflation rule that is recognis-
able, similar to the first proof of Theorem 3 
for the Hat tile.

For the experts, Baake, Gähler and Sa-
dun have extended the 1-parameter family 
of tiles given by ( , )Tile a b  to complex vari-

ables [3]. They showed that all the con-
tinuous hulls are topologically conjugate 
dynamical systems under these parame-
ters, up to linear rescaling of the ambient 
space, and found a self-similar representa-
tive they call the CAP tiling. The name fol-
lows from their result that the tiling is a cut 
and project tiling, and hence forms a mod-
el set. They also compute the cohomology 
of the family and show that it has pure-

Figure 16  The image on the left is ( , )Tile 1 1  and one must forbid reflections to obtain an aperiodic monotile. The tile 

in the centre is the Spectre tile that tiles the plane without allowing reflection, and does not tile the plane if there is at 

least one Spectre tile and at least one mirror image of the Spectre tile. The image on the right comes from a fusion system 

to construct arbitrarily large patches of Spectre tiles.

Figure 17  A patch of Spectre tiles.
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