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A graph is a natural mathematical model for a network of any 
kind. In a graph, each object is represented as a vertex, and if 
there is a relationship between two vertices, then there is an edge 
between them. Undirected edges represent symmetric relations, 
and we draw them as lines. For example, communications between 
two Internet routers usually go in both directions. If the relation 
is not symmetric, we model this using directed edges, and draw 
them as arrows. For example, if somebody follows you on Twitter, 
you might not follow back. In Figure 1, we give some examples of 
networks, directed and undirected.

This article is about how to mathematically describe real-life 
networks, such as social networks or the World Wide Web, using 
so-called random graphs. Usually in research, and always in this 
article, the vertices of a random graph are fixed, while the edges 

Complex networks, modeled as random graphs
Many real-life systems are networks. A network is a set of objects 
connected by some relationship. For example, a railroad is a col-
lection of stations connected by rails. In a social network, people 
are connected by friendships. The Internet is a network of routers 
connected by wires. In our brain, neurons are connected if they 
fire together.
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Figure 1  (a) Network of retweets about Project X in Haren, 21-09-2012, 7:00. The average number of retweets per user is small compared to the network size [11]. This network is sparse. 
(b) Any railway station can be reached by train from any other. The railway network is connected. (c) The number of other webpages, from which a webpage can be reached, varies greatly 
per webpage. The Webgraph is scale-free [3]. (d) Anna is a friend of Boris and Cecile. Then, Boris and Cecile are likely to be friends, too. Social networks have many triangles.

Il
lu

st
ra

ti
on

: 
W

ik
im

ed
ia

 C
om

m
on

s

la
w.

di
.u

ni
m

i.i
t/

da
ta

se
ts

.p
hp

Il
lu

st
ra

ti
on

: 
Na

ta
lia

 L
it

va
k

Il
lu

st
ra

ti
on

: 
M

ar
ijn

 t
en

 T
hi

j

(a) (b)

(c)

(d)



104	 NAW 5/24  nr. 2  juni 2023	 Randomness and structure in complex networks	 Nelly Litvak

–– Triangles. How do people in social networks usually meet? 
Often I know friends of my friends, they can be my friends, too. 
Groups of friends create clusters with many triangles, such as 
in Figure 1(d): if Anna is a friend of Boris and Cecile, then it is 
not surprising that Boris and Cecile know each other as well. 
Having many triangles is another typical structural property of 
complex networks.

Now that we have discussed the common properties of complex 
networks, let’s see how to model them mathematically using ran-
dom graphs.

Modeling sparse networks with Erdős–Rényi random graphs

Erdős–Rényi random graph
Recall that in a random graph, vertices are fixed, and edges are 
placed at random. Suppose we have n vertices. Possibly the sim-
plest rule for placing random edges is to connect any pair of verti-
ces i and j by an edge with the same probability p, independently 
of all other edges. This model is called an Erdős–Rényi (E-R) ran-
dom graph after the founders of the theory of random graphs Paul 
Erdős and Alfréd Rényi [7]. We denote this random graph by ( )ER pn . 
Figure 2 is a small example of a social network as an Erdős–Rényi 
random graph. The solid lines are existing connections and the 
dashed lines are possible but not realized connections.

You may see how E-R graphs look like for different n and p 
on the Network pages website [16]. The simulator also includes 
parameter npm = , the significance of which I will explain in the 
next section. Look at the figures produced by the simulator: do the 
graphs look as you expected?

Of course, in reality, social connections are formed not at all as 
in the E-R model. This simple model ignores complex dependen-
cies, heterogeneity between people, polarization, et cetera. More-
over, it is not even supposed to include all these things because 
Erdős and Rényi invented this model for completely different pur-
poses: to solve difficult problems in combinatorics! This ingenious 
idea yielded a by now well established approach in Graph Theory, 
the so-called ‘probabilistic method’ [1]. However, as it often hap-
pens in mathematics, a model invented for solving one problem, 
becomes very useful for solving completely different problems in 

Figure 2  Social network is modeled as an Erdős–Rényi (E-R) random graph: each friend-
ship exists with probability p.

are placed at random. This makes sense because relationships be-
tween objects often emerge at random, like friendships in a social 
network. Also, even if a network is not random, such as the Inter-
net, its structure is so complicated that it is often useful to describe 
it through statistical summaries and model it as a random object. A 
random graph model is in fact a set of rules, according to which the 
random edges are chosen. Different rules result in different models 
with different mathematical properties. For example, in one model, 
edges between all vertex pairs can be equally likely, while other 
models assign higher probabilities to some vertex pairs.

In this article, I will tell about several random graph models that 
are by now well understood, even classical. My goal is to explain 
how particular rules of placing random edges result in graphs that 
share some of the fundamental empirical properties of real-life 
networks. There are many such properties, but I will address four 
of them, listed in the next section.

Four fundamental properties of real-life networks
Surprisingly, many networks of a completely different nature, such 
as social networks and the Internet, share common properties. 
This is why we talk about a structure of a network. In this article I 
will discuss four such common structural properties.

–– Sparse. Consider a social network. Even if the network is very 
large, a person can maintain only so many friendships. We say 
that social networks are sparse, meaning that the number of con-
nections per person is limited, and does not increase very much 
even if the network grows. Figure 1(a) shows an interesting ex-
ample: the network of retweets about Project X in Haren in 2012. 
A birthday invitation of a 16-year-old girl went viral in social media 
and resulted in a destructive riot. Dots are Twitter users and each 
tiny arrow (a directed edge) represents a retweet from one user 
to another. The figure shows this network in the morning before 
the riot. We see that the network is sparse, on average there are 
only 1.5 retweets per user. Over the night of the riot the network 
increased in size more than 10 times, but the average number of 
retweets remained small, it went only a little bit above two.

–– Connected. Consider the network of railway stations connected 
by railroads, as the NS network in Figure 1(b). The vertices are 
the stations, and the (undirected) edges are the railway connec-
tions between them. A passenger can travel by train from any 
station to any other. The railroad network is connected. The 
Internet is another powerful example of a connected network. 
Internet is extremely complex and completely decentralized, yet, 
the data can be transferred across the planet from any Internet 
router to any other!

–– Scale-free. In the Web graph, vertices are the webpages, and 
(directed) edges are the hyperlinks. By clicking on a hyperlink, 
we can go from one webpage to another. From how many other 
pages a typical webpage can be reached? In Figure 1(c) we 
show the average and the maximum of this number in the .eu 
domain of the Web graph in 2015. We see that on average, a 
webpage can be reached from 85.7 other webpages. However, 
the maximum is over 200 000 times larger than average! We 
say that such network is scale-free. This unusual term means 
that there is no such thing as a ‘typical webpage’. The number 
of hyperlinks pointing to a webpage can have very different 
scales — from a few, to hundreds, thousands, and millions.
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This is, by the way, the same m that you saw in the simulator 
before. If we substitute this in (1), the average number of edges 
per vertex becomes

.n
n2

1
2<$

m m-

Since 0>m  is fixed, the average number of edges per vertex is 
bounded by a fixed number 2

m , hence the network is indeed sparse.
We denote a sparse E-R random graph by ( / )ER nn m . It is im-

portant to notice that the parametrization does not change the 
number of parameters of the model. The original model ( )ER pn , 
has two parameters: n and p. The sparse model ( / )ER nn m , too, 
has two parameters: n and m. The difference is that in the sparse 
model, /p nm=  decreases with n, and this gives us a sparse net-
work for any fixed m. This is how a very simple model allows 
us to describe mathematically a very essential property of real 
networks — their sparsity, and remains flexible enough to create 
sparse graphs with less or more edges, by varying m.

I want to close this section with a small remark from my ex-
perience in teaching random graphs. When students learn about 
the Erdős–Rényi model, they easily remember that all edges have 
equal probability p, while the independence of edges is often over-
looked. The independence of edges indeed doesn’t play any role 
in modeling sparsity (because sparsity concerns only the average 
number of edges per vertex), but it will take a central stage later 
in this article, explicitly so when we will discuss the number of 
triangles.

 
Almost sure guarantee that a random graph is connected
A graph is connected if there is a route along the edges from any 
vertex of the graph to any other. Graphs in Figure 1(b) and Figure 
3(b) are examples of such connected graphs.

As we already know, many important real-life networks are con-
nected. For example, in the Internet, information can be delivered 
from any router to any other. But when we model a network as 
a random graph, we place edges at random. Will such graph be 
connected? In this section we will solve this beautiful mathematical 
puzzle for the Erdős–Rényi random graph.

Isolated vertices in E-R random graph
It is easy to realize that if there are isolated vertices (vertices with no 
edges attached to them), then the graph is definitely disconnected. 
Of course, there are other ways to disconnect the graph: there can 
be isolated islands of 2, 3, ... vertices. Yet, as we will see, isolated 
vertices are a good start. Moreover, surprisingly, in the E-R model, 
isolated vertices define whether the graph is connected or not.

To begin with, let us compute the average number of isolated 
vertices. We denote this number by N0; the sub-index zero reflects 

the unknown future. With arrival of abundant network data, and 
explosive growth of Network Science, the E-R model is a funda-
mental cornerstone in studying real-life networks, because deep 
understanding of the simplest possible mathematical models is 
crucial for explaining real-world phenomena. In this section the 
phenomenon in question will be sparsity of real-life networks.

Sparse networks
The notion of a sparse network has to do with the number of 
edges and the number of vertices. Loosely speaking, in a sparse 
network, there are not too many edges per vertex on average. But 
how many is ‘not too many’? Suppose we have a networks of 1000 
vertices. If there are on average, say, 2 edges per vertex, then we 
will probably all agree that this network is sparse. If there are on 
average 500 edges per vertex, then, we will probably say that this 
network is not sparse, because 500 is a lot compared to 1000. 
But what about 20 edges per vertex? Or 50? Or 70? When does a 
network ‘start’ being sparse?

We could give a mathematical answer to this by choosing a 
threshold of some sort. However, the Theory of Random Graphs 
takes a different approach. We say that a network is sparse when 
the average number of edges per vertex remains bounded when 
the number of vertices n grows to infinity. In other words, sparsity 
is a so-called asymptotic notion, it is defined only in the limit, 
when .n " 3

Sparse Erdős–Rényi random graphs
Let us now see how sparsity works out in the E-R random graph, 

( )ER pn .
In any undirected graph of n vertices, there are in total ( )n n

2
1-  

possible edges. Since in the ( )ER pn  model each edge exists with 
probability p, there are on average

( )n n
p2

1
$

-

edges. To get the average number of edges per vertex, we divide 
the last expression by n. The result is:

( )
.

n
p2

1
edges per vertex on average$

-
(1)

Intuitively, the network is sparse when p is small because then 
there are less edges per vertex. But how small should p be? Sup-
pose we choose a very small fixed p, say, .p 0 0001= . Then the 
average number of edges per vertex is

( )
. .

n
2

1
0 0001$

-

The most important observation about this expression is that it is 
not bounded, it grows to infinity when n grows to infinity, so our 
asymptotic definition of sparsity is violated.

Since even a very small fixed p doesn’t give us a sparse net-
work, we need a different approach. Here we use a powerful tech-
nique called parametrization. The idea is to not view p as a given 
constant in (0,1) but make it a function of n, so ( )p p n= . Why is 
it useful? Because, then we can choose the function ( )p n  in such a 
way that it will ‘compensate’ for the growth of n in expression (1) 
for the average number of edges per vertex.

In order to create a sparse network, we choose

( ) , .p p n n 0>|
m

m= =
(a) Disconnected graph. (b) Connected graph.

Figure 3  In a connected graph, all vertices are connected by a path of edges
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Indeed, let us substitute this p in (2). Then we get

,

( )
( )ln
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n n n

p n
a n

e n

1 1

( )ln

n
n

a n a a

0

1

1
1

$ $

$ $.

= =

= =

- --
-

- - -

c m
(6)

where the approximation holds analogously as in (4). We see that 
the average number of isolated vertices is approximately n a1 - . 
Whether this number is big or small when n goes to infinity, de-
pends on a. When a 1< , we have that a1 -  is positive, so n a1 -  
grows to infinity. In this case, a large network has many isolated 
vertices, the graph is disconnected. However, if a 1> , then a1 -  is 
negative, and n a1 -  is vanishing. In this case, on average, there are 
no isolated vertices, and the probability that a graph is connected, 
converges to 1 as n goes to infinity. In probability theory we say 
that in this case the graph is connected almost surely. For large 
finite graphs of size n, this means that the corresponding probabil-
ity is smaller than 1 but very close to 1, and becomes even closer 
when n grows. The exact mathematical result is:

,
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The abrupt transition from disconnected to connected graphs is a 
beautiful example of a phenomenon known as phase transition. 
Like water turns into ice at zero degrees Celsius, isolated vertices 
vanish when connection probability p exceeds the so-called con-
nectivity threshold

( )
.

ln
p n

n
connectivity =

We see this in Figure 4(a) and 4(b), a graph here has 100 vertices, 
and . .p 0 046connectivity .

Disappearance of disconnected islands
One may wonder, what about other ways of making a graph dis-
connected? Can there be islands of 2, 3, ... vertices? To answer this 
question, we consider isolated pairs. An example of a graph with 
an isolated pair is shown above in Figure 3(a).

Denote the average number of isolated pairs by N2. Let us now 
compute this number. There are ( )n n

2
1-  pairs in total. A pair is iso-

lated, if the two vertices in the pair are connected to each other, 
this happens with probability p. Furthermore, each of the two ver-
tices in the pair must be isolated from the other n 2-  vertices in 
the graph. The probability of this for each vertex is ( )p1 n 2- - , and 
for two vertices simultaneously, is ( ) .p1 n 2 2

- -6 @  Altogether, we get

( )
( ) .N

n n
pp2

1
1 n

2
2 2

$ $=
-

- -8 B
If we now substitute p ( )ln

n
a n=  as in (5), we get
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Compare this to the expression (2) for N0. If a 1>  then n ( )a2 1 -  
goes to zero even faster than n a1 - . In addition, ( )ln

n
a n  goes to zero, 

that isolated vertices have zero edges attached to them. There are 
n vertices, each of which can be isolated with some probability, 
and we need to compute this probability first. There are n 1-
possible edges, each edge is absent with probability p1 - , and the 
edges are independent. Then, the probability that all n 1-  possible 
edges of a vertex are absent, is ( ) .p1 n 1- -  The result is:

( ) ( ) ,p1a vertex is isolatedP n 1= - -

where ( )P $  denotes the probability of an event in the brackets. 
There are n vertices in total, and the average number of isolated 
vertices is

( )N pn 1 n
0

1$= - - (2)

due to the very useful and somewhat counter-intuitive result in 
probability, called linearity of expectations. The linearity of expec-
tations tells us that when we add random variables, the average of 
the sum is always the sum of averages, even if random variables 
are dependent. In this case, we can think of counting isolated ver-
tices as adding random zeros and ones. We add 0 if the vertex is 
not isolated, and 1 if the vertex is isolated. These zeros and ones 
are dependent: for example, if we know that n 1-  vertices are iso-
lated, then for sure the n-th vertex is isolated as well (I leave it to 
the reader to explain why). Nevertheless, on average, each vertex 
adds ( )p1 n 1- -  to the sum, and the total average is ( )pn 1 n 1$ - -  
thanks to the linearity of expectations.

Sparse E-R random graphs are disconnected
Expression (2) is already sufficient to conclude that large sparse 
E-R graphs are very likely to be disconnected! Indeed, take a sparse 
E-R random graph ( / )ER nn m , where /p nm= . Then (2) becomes

,n n ne1
n 1
.

m- m
-

-a k (3)

where the approximation is quite good for large n, and follows 
from the famous limit:

.lim n e1
n

nm- =
"3

m-a k (4)

This approximation (3) tells us that the number of isolated vertices 
in a sparse E-R random graph grows roughly linearly with n. When 
there are so many isolated vertices on average, it is very unlikely 
that there will be none of them in the graph. The exact mathemat-
ical result is as follows:

( ( / ) ) .lim ER n 0is connectedP
n

n m =
"3

Connectivity threshold
Let us now think of connectivity of the ( )ER pn  model when p 
changes from 0 to 1. When p 0= , there are no edges, so the graph 
is disconnected. When p grows, there will be more edges, and 
when p 1= , all edges are present, so the graph is connected and 
complete. Then, there should be a range of values of p, for which 
the graph is likely to be connected. We already saw that /p nm= , 
as in sparse E-R graphs, is not large enough to connect all vertices. 
For connectivity, we need larger p, but it turns out that ‘a little bit’ 
larger p is already sufficient. The transition from disconnected 
graphs to connected ones occurs when we choose a slightly differ-
ent parametrization:

( )
, .

ln
p n

a n
a 0for some >= (5)
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as well. Hence, we conclude that above the connectivity threshold, 
isolated pairs are even less likely than isolated vertices.

In fact, we can mentally visualize how the graph ‘gets frozen’ 
when p increases. You can observe how this happens in the simu-
lator on Network Pages [16]. The simulator adds edges one by one, 
and this is equivalent to gradually increasing p. The process starts 
with completely disconnected vertices. Then, p and the number of 
edges grow, and connected islands appear. As the graph becomes 
denser, large disconnected islands start merging together. Gradu-
ally we do not see anymore islands of 5, 4, 3, 2 vertices. Finally, 
when p exceeds pconnectivity, the last isolated vertices disappear, 
and the graph becomes connected. And now you also know why 
the process evolves this way, and you can explain it with just a 
couple of formulas!

Mathematics of scale-free networks
Real-life networks are often scale-free} In this section we want to 
express this scale-free property in mathematical terms, and get 
some insight in how this phenomenon emerges.

It will be convenient to introduce a bit of terminology. The num-
ber of edges attached to a vertex is called the degree of this ver-
tex. For instance, in Figure 5, the degree of vertex 2 is equal to 3.

The scale-free property is nothing else but a large variability of 
degrees. In real-life networks, there is often a relatively small but 
notable group of vertices with extremely high degrees, much high-
er than average. This is the case, for instance, in the World Wide 
Web, as we saw in Figure 1(c).

Sparse E-R graphs are not scale-free
The title of this subsection already gives away the result, but we 
are mainly interested in why sparse E-R graphs are not scale-free. 
An intuitive explanation is that the scale-free property also means 
large heterogeneity of vertices: some vertices attract many more 
connections than others. In E-R random graph this is clearly not 
the case: all edges have the same probability, and in that sense, all 
vertices are symmetric. Yet, since the edges are placed at random, 
it is also true that degrees of the vertices are random, so there will 
be some variability among them. The main message of this section 
is that this variability, solely due to randomness of the edges, is 
insufficient to create a scale-free network.

Let us see how this looks in formulas. Every vertex has n 1-  
possible edges, each edge exists with probability /nm , inde-
pendently of anything else. Then the degree of a vertex follows 
the well-known Binomial distribution, and we can write down the 
probability that the degree of a vertex is k:

( )
( )! !

( )!
,

, , , .

P
n

n
n n

n

k
k k

k
1

1
1

0 1 1

degree of a vertex is
nk k1

f

m m=
- -

-
-

= -

- -a ak k
(7)

Now, if we take the limit n " 3, this converges to

( ) ! , , , .lim P ek k k 0 1degree of a vertex is
n

k
f

m= =
"3

m- (8)

I leave it to the reader to derive this limit. A hint: the limit (4) will 
be useful again. In particular, the limiting probability that a degree 
is zero (obtained by substituting k 0= ), is e m- . This is of course 

Figure 4  (a) E-R random graph with n 100= , .p 0 04= . The graph is disconnected. (b) E-R random graph with n 100= , .p 0 05= . The graph is connected.

(a) (b)

Figure 5  A degree of a vertex is the number of edges attached to it. For example, the 
degree of vertex 2 is 3.
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This probability, about one in a hundred thousand, is not very 
small in a network of millions, even billions vertices such as the 
World Wide Web. And the probability that the degree is at least 
1000, is even much bigger:
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This is a sizable proportion of vertices especially in a very large 
network. These results are even not very surprising because, defi-
nitely, the k x-  decreases much slower than / !.kkm

When a model correctly captures a phenomenon however, it 
does not mean that the model is accurate, and there can be other 
suitable models. After power laws were found for the first time in 
the paper by three brothers Faloutsos [8] on the connectivity of the 
Internet, and then, explosively, in most other types of networks [2], 
there has been a lot of discussion about whether this model really 
holds. An interesting milestone in this discussion was the 2019 
paper ‘Scale-free networks are rare’ by Broido and Causet [5]. The 
authors’ statistical analysis resulted in the conclusion that (10) 
holds in but a modest fraction of real-life networks. Almost im-
mediate answer to these results was the paper by Voitalov, van 
der Hoorn, van der Hofstad and Krioukov [12], called ‘Scale-free 
networks well done’, with a playful hint to the steak analogy. This 
paper has reminded of the fact that the power law is a much 
broader notion than the rather stringent formula (10). Mathemati-
cally, power laws are defined more precisely as

( ) ( ) , , ,P Ck k k k2 0degree of a vertex is where > >$ x= x- (11)

with function ( )C k  being a so-called slowly varying function. The 
term ‘slowly varying’ means that ( )C k  may grow or decrease not 
faster than any arbitrarily small power of k. Formally, this can be 
written as

( )
( ( ))

.lim
log

log C
k
k

0
k

=
"3

(12)

Of course, constC =  is a special case of a slowly varying function. 
The point in [12] is that (12) is an asymptotic expression, so for 
finite k we can never be sure whether (11) holds or not. The au-
thors in [12] suggested their own method how to check whether 
the power law model is acceptable, and many real-life networks 
indeed do pass this test.

The debate on power laws in 2019 attracted a lot of attention 
and even hit the media [15]. I enjoyed this scientific discussion, 
but personally I do not find it extremely important whether power 
laws exist in reality or not. Mathematics describes the world with 
abstract objects, and in this case I find power laws a very suitable 
object because it does capture the essence of the phenomenon in 
hand: the high variability of degrees in real-life networks.

Preferential attachment
While we can observe, measure and model the scale-free phe-
nomenon, the question remains, why are the networks scale-free? 
The preferential attachment model is an attempt to answer this 
question with a dynamic mathematical model of network growth. 

the same expression as the probability that a vertex is isolated, 
that we used in (3). The probability distribution in (8) is called the 
Poisson distribution. The parameter m is the mean, or, the average 
of the Poisson distribution. This is consistent with the sparse E-R 
model because

( / ) ( ) .ER n n n1average degree in n $ .m
m

m= -

Again, the approximation is accurate when n is large.
We can now use the Poisson formula to check the scale-free 

property. For instance, assume that the average degree is 100m =  
(similar to the data in Figure 1(c)), and let us compute the prob-
ability that a vertex has degree k 1000= , a modest 10-fold of the 
average, much smaller than typical large degrees in the real data. 
Substituting the numbers in (8) we get

( | ) ! .lim P e100 1001000 1000degree of a vertex is
n

100
1000

m = =
"3

- (9)

Although 1001000 is impressive, the 1000! in the denominator 
is a humongous number. Expression (9) has a stunning 610 zeros 
after the decimal point! Moreover, the probability that degree is at 
least 1000 is not much larger:
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which is the same expression as in (9), only multiplied by .1 11. , 
so we basically get the same answer. This is because the Poisson 
distribution is known to stay very close to its average. It is funda-
mentally not scale-free!

Power laws
A model that is able to capture the scale-free phenomenon, is the 
so-called power law. In this model the probability that a vertex has 
degree k is approximately proportional to a negative power of k, 
thus the name ‘power law’. For the time being, we will write this as

( ) ,

, , .

P C

C k

k k

k2 0 0

degree of a vertex is

where > > > >min

$.

x

x-

(10)

Clearly smaller x means higher probability of k. In particular, even 
very large k are quite likely to occur when x is small. However, we 
need x to be greater than 2 because otherwise large values are so 
likely that the average degree is infinite, and therefore the network 
is not sparse anymore. I encourage you to check this using the 
formula for the average, or, mean degree

( ) .Pk kaverage degree degree of a vertex is
kk min

$=
3

=
/

(Hint: Think of harmonic series.)
Let us now verify that the power laws indeed model the scale-

free phenomenon. Take .2 5x = , k 33min = , . .C 288 67=  Then the 
average degree is approximately again 100, but now we get
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Here we have more green balls in an urn, so it is more likely to 
choose a green ball, as in the figure. After that, we add another 
green ball, so in the next round, it’s even more likely to choose 
a green ball again. This is exactly the rich-get-richer mechanism. 
Pólya’s urn is another example of a mathematical model that ap-
peared before its applications. Mathematical techniques developed 
for Pólya’s urn scheme, are often used to analyze preferential at-
tachment dynamics in networks.

Emergence of power laws
Intuitively, it is clear that preferential attachment helps some ver-
tices to get lots of connections, making power laws plausible. In 
this section we will go one step beyond intuition and see why it 
happens, mathematically. There are many ways to do this. In this 
article I use the argument in lines of [9, Section 8.3]. The way I 
derive it here is not strictly rigorous, we may call it a heuristic 
argument. However, it does give mathematical reasons why de-
grees in the preferential attachment model follow the power law 
distribution (10).

Suppose the network starts at time t 0=  with vertex zero with-
out edges. At time t 0= , vertex 1 arrives with one edge and con-
nects to vertex 0. After that, vertices appear in the network one by 
one, and we will number them , , , t2 3 f , so t is our ‘current time’, 
and, including vertex 0, there are t 1+  vertices at time t. Denote 
by ( )D ti  the average degree of vertex i at time t i$ . With arrival 
of vertex t, the average degree of i in the previous step, ( )D t 1i -
, changes according to the preferential attachment rule. There are 
many versions of this rule, but we assume the simplest one: a 
new vertex makes only one connection, and attaches to one of 
the existing vertices with probability exactly proportionally to their 
degree. So, the probability that vertex t attaches to vertex i is,

( ) ( ) ( )
( )

( )
( )

,
D D D

D D
t t t

t
t
t

1 1 1
1

2 1
1

t

i i

0 1 1g- + - + + -
-

=
-
-

-
(13)

where the denominator equals to ( )t2 1-  because in any graph all 
degrees sum up to twice the number of edges, and at time t 1-  
we have t 1-  edges because each vertex , , , t1 2 1f -  arrives with 
one edge.

Let us now look how the average degree of vertex i changes 
at time t:
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We can now iterate (15) back in time till ( ) :D i 1i =  
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This model formalizes the mechanism known as ‘rich get richer’, 
or ‘popular get ever more popular’. It works roughly as follows. 
Assume a network starts with three vertices, like the three gray 
vertices in Figure 6. When the next vertex arrives (the black ver-
tex in the figure), it can make one of three possible connections 
(dashed lines). For that, the new vertex uses the rich get richer 
mechanism: the probability to connect to any of the gray vertices 
is proportional to the number of connections they already have. 
In Figure 6, one of the gray vertices has two connections, and 
therefore it has a higher chance to get one more. Clearly, the more 
connections a vertex gets, the easier it is to attract even more 
new connections. This is the rich get richer mechanism at work! 
It is quite natural that with such dynamics, some vertices become 
extremely well connected.

Barabási and Albert in 1999 [2] put forward the preferential 
attachment model as a plausible mathematical explanation for the 
emergence of scale-free networks. This became a very influential 
work, paper [2] has more than 43K citations on Google Scholar, 
and counting! That said, it rarely happens that such an influential 
model and its brilliant application in a rising new area of science, 
has no history in earlier work. Indeed, the model is not new. In 
1965, Derek de Solla Price suggested a very similar model for 
networks of scientific citations [10]: papers that are already fre-
quently cited, tend to receive many new citations. Even earlier, in 
1927, Yule proposed a similar model for the evolution of biological 
species [13]: large populations of species have large offspring. And 
even before that, in 1925, great mathematician George Pólya and 
his PhD student Florian Eggenberger published a paper about a 
mathematical model that is now called Pólya’s urn scheme. The 
scheme works as follows. We have a number of green and red 
balls in an urn. We choose one ball at random, and then return it 
to the urn together with another ball of the same color. Figure 7 
illustrates how it works.

Figure 6  A new (black) vertex arrives in the network, and connects to existing vertices 
with probabilities proportional to their current degrees. Dash lines denote possible edges, 
and the number next to a dashed line is the probability of this edge.

Figure 7  Pólya’s urn scheme. Initially we have 4 green balls and 2 red balls. We randomly 
chose a green ball, and therefore we add another green ball to the urn. As a result, we have 
2 red balls and 5 green balls. It is now even more likely to choose a green ball.

(14)

(16)
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Sparse Erdős–Rényi random graphs don’t have many triangles
Denote by nD  the average number of triangles in a sparse E-R ran-
dom graph, ( / )ER nn m . We will now find a formula for nD  to see 
how large this number can be. First of all, the number of possible 
triplets of vertices in a graph is:

( )( )
.n n n n

3 6
1 2

=
- -c m

Next, a triplet of vertices i, j, k forms a triangle if and only if all 
three edges ij, jk, ki exist in the graph, as in Figure 8.

The probability of this event is

.n n

3

3

3m m=b l (17)

Then, the average number of triangles nD  is the fraction 
n3

3m  of all 
( )( )n n n

6
1 2- -  possible triangles:

( )( ) ( )( )
.

n n n

n n

n n n
6

1 2 1 2
6 6n 3

3

3

3 3
.

m m m
D =

- -
=

- -
(18)

For instance, if 9m = , there are on average 121.5 triangles. Maybe, 
121.5 is not a very small number, but the main implication of for-
mula (18) is that this number does not grow when n grows. Even 
if the number of vertices n is very large, the average number of 
triangles is stuck at 121.5. In a networks of several million vertices, 
having only 121.5 triangles on average doesn’t conform at all to 
the triangle closure phenomenon.

Before going any further, let us do what I always ask my stu-
dents to do after answering the question: analyze the answer.

First of all, clearly, we will never see 121.5 triangles, this number 
is the average. In this context, it means the following. If we gener-
ate many graphs of size n, count the number of triangles in each of 
them, and then compute the average, then we will get something 
close to 121.5. Of course, since the edges are placed at random, 
the actual number of triangles will be different in every realization 
of ( / )ER nn m . In fact, one can prove that the number of triangles in 
an ( / )ER nn m  random graph converges to the Poisson distribution 
with parameter 6

3m  when n goes to infinity.
Second, why exactly don’t sparse E-R random graphs have many 

triangles? Which model assumptions are responsible for this result? 
There are in fact only two assumptions: all edges have the same 
probability n

m , and are independent. Of course, if we increase the 
edge probability, then the number of triangles increases as well. 
Nevertheless, when the edge probability is n

m , the number of trian-
gles is bounded even for very large m. To let the number of triangles 

We can now use the property of the gamma function ( ):$C

for large enough and fixed
( )

( )
.

x
x

x x.
a

a
C
C + a

If t and i in (16) are large, then we have an approximate expression 
for the average degree of vertex i at time t:

when and are large enough.( )D
i

it t t/

/

i 1 2

1 2
.

We already see the power 1/2 appearing, it remains only to trans-
late this to the power law (10). This is where our derivation be-
comes ‘heuristic’. Remember that ( )D ti  is the average degree of 
vertex i, but let us pretend that this is the exact degree (even if it 
is not necessarily an integer number). Then the fraction of vertices 
with degree k, among the total of t 1+  vertices, is

the range of such that ( ) ( . , . ) .D k k
t

ti
1

1 0 5 0 5i$ !
+

- +7 A
Now we need to find, which i are in the required range:

Solving for i, we get:
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It remains to divide the last expression by t 1+ :

,k kt
t2 1 23 3$ $ .+

- -

and we have obtained a power law, as in (10), with C 2=  and 
3x = .

We can vary x, by adjusting the model a little bit. For instance, 
the attachment probability to vertex i is proportional to

degree of ai +7 A
for some a 1> - . Interestingly, this changes x, we get a3x = + . 
We may also allow vertices to arrive with m 1>  edges, then we 
must take a m> - , and the power law exponent is /a m3x = + .

Finally, I want to notice that the heuristic argument above does 
capture the essence because the degrees in the preferential at-
tachment model tend to stay close to their averages. Making this 
statement precise, however, is not easy. It requires some work and 
involves several advanced probabilistic techniques that have been 
developed only recently, starting with paper [4] that presented 
such rigorous analysis for the first time in 2001.

Mathematical model for triangles
Real-life networks have many triangles, as illustrated in Figure 1(d): 
if Anna knows Boris and Cecile, then Boris and Cecile likely know 
each other as well. This phenomenon is called triangle closure. In 
this section we will talk about how to capture triangle closure in a 
mathematical model. Figure 8  Triangle ijk in ( / )ER nn m . The probability of each edge is /nm .
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(so, local) direct flights. On a slightly more abstract level, a ‘loca-
tion’ can be defined through the properties of the vertex, for exam-
ple, we may ‘locate’ people in a multi-dimensional space depending 
on their age and interests. Then, in a social network, similar people 
are more likely to be friends. This idea is very natural and appeal-
ing. In fact, many network scientists believe that only geometric 
random graphs can give us realistic models for complex networks.

Geometric networks naturally have many triangles, as we can 
see in the example in Figure 9. This is easy to explain intuitively: if 
vertices j and k are connected to vertex i, then j and k are likely to 
be close to i in the space, and thus they are likely to be close to 
each other as well, so edge jk has a high chance to appear.

In this article we consider the simplest sparse geometric ran-
dom graphs and prove that they indeed have many triangles. In 
this simple model, we place n vertices in a unit square (with side 1) 
uniformly at random, and we connect two vertices if the distance 
between them is at most r. We call this model ( )Geom rn . Figure 
10(a) shows an example of such model with n 11= .

To start, let us compute the probability of an edge. Edge ij 
appears if vertex j happens to be in a circle of radius r around 
vertex i. Since j is placed randomly on the area 1, the probability 
of such edge is:

is in the circle of radius from( ) .P j r i r r1

2
2r

r= = (19)

Of course, we assume that the area of a circle, r2r , is smaller than 
1, otherwise most vertices are connected, and the model is not 
very interesting.

Looking critically at formula (19), a sharp reader may notice that 
the formula does not work if i is closer than r to the boundary. 
This does not change the essence of the results but calculations 
become much messier when we have to take the boundary into 
account. This is why geometric models are often studied not on 
a square, but on a torus, where boundaries are merged together. 
I recommend a nice animation of how a square becomes a torus [14]. 
In words, on a torus, the boundaries are merged, and therefore 
vertices close to the boundary become close to each other. Figure 
10(b) shows that in our small example, replacing a square by a to-
rus results in one more, ‘over the boundary’ edge kl. We stick to the 
torus in this article so that all vertices are symmetric, and the prob-
ability (19) is correct for every edge ij regardless the location of i.

grow with network size, we need a different parametrization. For 
instance, if ( )p p n

n
= = m , then n

n
6

3 3
.D m  (I leave it to the reader 

to verify this themselves). But then, the average degree n
2

/1 2
. m , and 

the graph isn’t sparse anymore. In a sparse graph, the main culprit 
that fails the triangle closure is the independence of edges. Indeed, 
triangle closure tell us that existence of two edges makes the third 
edge more likely, and this is simply not the case in the E-R model. To 
solve this, we could explicitly introduce complicated dependencies 
between edges. While such models exist, here I will explain a more 
elegant and now common approach: introducing geometry.

Geometric random graphs
A fundamental way to create triangle closure is to place verti-
ces in a multi-dimensional space, and let vertices connect when 
they are close to each other. Sometimes such geometry is already 
there, for example, in the network of airports connected by direct 
flights, each airport has a location, and there are many quite short 

Figure 9  A geometric random graph.
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Figure 10  (a) A ( )Geom r11  random graph on a unit square. Vertices within distance r from each other form an edge. (b) A ( )Geom r11  random graph on a torus. The distance between 
k and l ‘over the boundary’ is less than r, therefore, on a torus, there is an edge kl.

(a) (b)
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In a sparse geometric graph, with r
n

= n , this probability is

.
n4 2

4n

The actual probability of triangle ijk is larger than that because 
there are many other configurations for such triangle to appear. All 
three vertices being in one square is only one of the possibilities.

Now recall that in any graph of size n there are ( )( )n n n
6

1 2- -  
possible triangles. Then, on average, the number of triangles in a 
sparse geometric graph is at least

( )( )
.

n n n

n
n6

1 2

4 242

4 4

$ .
n n- -

The actual average number of triangles nD  is even larger because 
we computed a lower bound. However, the order of magnitude is 
correct because we could derive nD  similarly: fixing the location of 
i and computing the areas in which j and k should be in order to 
form a triangle. These areas are larger than the area of our square, 
but they all are proportional to r2 .

We conclude that nD  in ( / )Geom nn n  grows linearly in n. 
This matches our intuition about, say, social networks: every new 
person in a network makes several friends and by that also partic-
ipates in several triangles.

Looking at the formulas we can exactly pinpoint the place 
where sparse ( / )ER nn m  random graphs differ from the sparse 

( / )Geom nn n  random graphs. In ( / )ER nn m , in formula (17) we 
multiplied the probabilities of all three edges because the edges 
are independent. But in ( / )Geom nn n , in formula (21), we mul-
tiplied probabilities only of two edges ij and ik, while edge jk 
appeared automatically, because j and k are so close to i, that they 
are automatically close to each other. This is exactly the mathemat-
ical representation of triangle closure.

What we learned and what’s next

The three models and the four properties
Figure 12 schematically shows the four properties of real-life net-
works and how we can model them with random graphs. The 
Erdős–Rényi random graph is the simplest model where all edges 
have the same probability and are independent. This is already 

Sparse geometric random graphs
To make the geometric random graph sparse, we again will use 
parametrization. As in the E-R model, every vertex has n 1-  po-
tential neighbors, and we have already computed the probability 
of connection in (19). Then the average degree of a vertex is

the average degree in[ ( )] ( ) .Geom r n r1n
2$ r= - (20)

Recall that the graph is sparse when its average degree doesn’t 
grow with n. We can achieve this with parametrization

where, .r
n

0>
n

n=

Then the average degree in (20) becomes

( ) .n
n

1 <
2

2r r
n

n- d n

We conclude that ( / )Geom nn n  graph is sparse. And now it re-
mains to prove that this sparse graph has many triangles.

Many triangles in sparse geometric random graphs
Calculations with circles are a little bit messy, that’s why we will 
derive a lower bound for the average number of triangles using 
squares instead of circles. A lower bound is sufficient for our pur-
poses because if the lower bound is large, then the actual number 
of triangles is even larger.

To get our lower bound, we assume that vertex i can be at any 
location, and we draw a square with diagonal r (and side r

2
) 

with i in a center, as in Figure 11. All vertices in this square are 
connected to i, but also to each other because they are at the 
distance less than r. The probability that j is in the square with 
center at i, is 

,r
2

2b l
and same holds for k. Since locations of j and k are independent 
from each other, the probability that both j and k are in the square 
is

and are in the square with side and center at( )

.

j k r

r r r

i
2

2 2 4

P

2 2 4
= =b bl l (21)

Figure 11  Vertex i is in the center of a square with diagonal r. All vertices inside this 
square are connected to each other.

Figure 12  Mathematical models for the properties of real-life networks. Green check 
mark: the property holds, and we discussed it in the article. Red stop sign: the property 
does not hold and we discussed it in this article. Gray check mark: the property holds, but 
we did not discuss it in th article. Gray stop sign: the property does not hold, but we did 
not discuss it in the article.
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sufficient to model sparse networks because sparseness concerns 
only the average number of edges per vertex. And if we choose the 
probability of an edge above the critical threshold, then the ran-
dom graph is also connected. This model however is very homo-
geneous: all vertices and edges have exactly the same properties, 
and the differences between them are only due to random fluctua-
tions. Turns out, this is insufficient to create a scale-free network. 
Also, there are not many triangles because the model doesn’t have 
a mechanism to enforce triangle closure.

In the Preferential Attachment model vertices appear one by 
one. Since every vertex comes with m connections, the Preferential 
Attachment random graph is sparse. It is also connected because 
new vertices attach to the existing connected graph. But, impor-
tantly, the vertices are not homogeneous: older vertices have high-
er chance to gain high degrees, and once they have a high degree, 
they are more likely to get new connections. This rich-get-richer 
mechanism results in the scale-free property, that is, huge differ-
ences between degrees of vertices. We didn’t discuss the number 
of triangles in the Preferential Attachment model. The stop sign in 
gray indicates that the number of triangles is small because, simi-
larly to the Erdős–Rényi random graph, the Preferential Attachment 
model does not stir towards triangle closure.

Finally, Geometric random graphs facilitate triangle closure by 
connecting vertices that are close to each other. Again, I included 
in gray the properties that we did not address in this article. If we 
make r large enough, geometric random graph is connected, this 
is indicated by the gray check mark. Further, sparse Geometric ran-
dom graphs as in this article, are not scale free, this is indicated 
by the gray stop sign. Similarly to the Erdős–Rényi model, there is 
no heterogeneity between the vertices. When the graph is large, 
the degree of a vertex follows the Poisson distribution with average 
degree 2rn .

Figure 12 may leave you with impression that it is not possible 
to model all four properties together. However, this is only because 
we considered very simple models. Recent state-of-the-art models 
are richer and closer to reality. For example, a very influential mod-
el that combined the scale-free property and triangles was intro-
duced in 2010 [10]. It is in fact a geometric model, but the vertices 
are placed not in an Euclidean space, but in a hyperbolic space. 
The hyperbolic space is curved, so the size of a ‘circle’ around a 
vertex depends on the vertex’s position, thus, there is high het-
erogeneity between vertices. Since then, many models appeared 
that include geometry and heterogeneity of vertices at the same 
time. There are also Preferential Attachment models that are either 
geometric or explicitly include high probability of triangle closure.

Other properties of real-life networks
There are many other very interesting and common structural 
properties of real-life networks that I did not mention in this ar-
ticle. For example, we often see communities. In social networks, 
communities can be defined by interests, language, or geography. 
Another famous property of real-life networks is the ‘small world 
phenomenon’: most pairs of vertices are connected by a short path 
of edges. In social networks, this phenomenon is also known as 
‘six degrees of separation’ stating that “everybody on this planet 
is separated only by six other people” (John Guare). The communi-
ties and the small world phenomenon, of course, too, have been 
studied using random graphs. The research on random graphs and 
complex networks is happening right now, and as a mathematician 
I am very excited to be a part of this collective scientific effort.

I hope that this article gave you insight into mathematical tools 
we use to think about complex networks, and left you with moti-
vation and curiosity to explore the endless opportunities of this 
quickly developing branch of modern mathematics.	 s
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